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Abstract

We study in graphs properties related to fault-tolerance in case a
node fails. A graph G is k-self-repairing, where k is a non-negative
integer, if after the removal of any vertex no distance in the surviving
graph increases by more than k. In the design of interconnection net-
works such graphs guarantee good fault-tolerance properties. In section
2, we give upper and lower bounds on the minimum number of edges
of a k-self-repairing graph for prescribed k& and n, where n is the order
of the graph. Im section 3, we prove that the problem of finding, in a
k-self-repairing graph, a spanning k-self-repairing subgraph of minimum
size is NP-Hard.

1 Introduction

Among the properties required in the design of efficient communication net-
works we consider those related to fault-tolerance. The least that must be
guaranteed is that, after failure of some nodes or links, the surviving network
still allows communication between all no-faulty nodes. This implies con-
straints on the connectivity of the corresponding graph. The k-connectivity
(resp. k-edge-connectivity) is associated to the capability of a network to resist
to the failure of any subset of (k — 1) nodes (resp. links).

Delay of communication in a network can be measured by the diameter
of the underlying graph. It is important that surviving networks still allow
communication with small delay. This implies constraints of bounded length
for disjoint paths. The k-diameter of a k-connected graph and other variants
of this parameter give a mean to study such properties (see [4]).

It is obvious that strengthening properties of fault-tolerance increases the
number of links and therefore the cost of the network. One of the most major
challenge is to design robust networks of efficient cost.

One approach consists in finding spanning subgraphs of a graph with the
same good properties and fewer edges. When the property dealing about
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is 2-connectivity, the problem is known as the 2-connected Steiner subgraph
problem (see [2]).

In [1], the authors considered the minimum number of edges with diameter
constraints.

A stronger property was studied by Farley and Proskurowski in [3]. The re-
quirement is that no penalty on any distance after the removal of a node.
That is no distance increases in the surviving graph. The authors determined
the minimum number of edges in such graphs called self-repairing graphs and
characterize the class of such minimum graphs in term of size.

In this paper, we consider graphs in which the removal of any node makes no
distance in the safe graph increases by more that k.

Let G=(V,E) be a connected graph with m edges and n vertices. For a
vertex z, G — {z} denotes the subgraph of G induced by V — {z}. For z and
y in V, we denote by dg(z,y) the length of a shortest path between z and y
in G. We say that G is k-self-repairing, where k is a non-negative integer, if
after the removal of any vertex the distances in the surviving graph increase
by at most k. That is :

Vo € V,V{y, z} cV- {m}sdG—{m}(y3 z) < dG‘(y% z) + k.

Note that such a graph is 2-connected and every pair of incident edges,
called a transition, is on a cycle of length bounded by &£ + 4.

Let n > 4 and 0 < k < n - 4. We define g(n, k) as the minimum size of a
k-self-repairing graph of order n. Biconnectivity implies that g(n,k) > n. For
a fixed n, we have : '

g(n, 0} 2 g(n,1) > g(n,2) > ... > g{n,n — 4).

It is easy to see that C,, n > 4 is (n-4)-self-repairing of size n and then,
g{n,n—4)=n.

Self-repairing graphs studied in [3] are those satisfying the definition above
for £ = 0. The authors proved that g(n,0) = 2n — 4 and characterize such
minimum graphs.

2 Bounds on the size of k-self-repairing graphs

Proposition 2.1 : Forn>6andk > 1,

n—3 n—2
< <
P _g(,n,k)_(n+4)+2[k+2

(n—1)+ 1.

Proof :



The lower bound must be proved only for k-self-repairing graphs having at

least one vertex of degree 2 since otherwise the size of the graph is at least §n

which is better than the lower bound given in the proposition above.

Let zo be a vertex of degree 2. Consider a BFS tree 7' rooted at zp. For an
edge [u, v] of G define Imaz([u, v]) as maz{L(u), L(v)}, where L(u) is the level
of vertex u in T', that is its distance from ;. Let e = [x,y] be an edge of T
such that Imaz(e) > 2. We assume that L(z) > L(y). Let z be the parent
of y. The transition defined by edges [y, 2], [y, z] is denoted by tr(e). This
transition is in a cycle of length at most k + 4. Indeed, after y, one can go

down again through at most ij levels using edges of T before having to
go back using an edge of & — E(T"). An edge of E — E(T) used to make tr(e)
in a cycle of length at most &k + 4 is called a e-loopbackedge (see figure 1).
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Figure 1: e = [z,y] Edges shown in bold are e-loopbackedges

Each edge of E—E(T') is an e-loopbackedge for at most k+1 edges e (Imaxz(e) >
2) of E(T) . Since dg(wg) = 2, the lower bound follows.

To prove the upper bound, we give constructions of family of such graphs.
First construction :

Two vertices v and v are said to be related if the following conditions are
satisfied :

L dgu0) = |27



2. Fzr every edge e incident to u, there exists a path of length at most
+4

[ 5 ], containing e and connecting u and v.

3. Fgr every edge e incident to v, there exists a path of length at most
+4

f—z—], containing e and connecting w and .

Let ¢ and 7 be the two integers such that n — (k + 4) = q([—lf-;——éj ~ 1)+,

k+4
where r < L——+—J — 1. Start with a cycle Gy of length &k + 4. Iterate g times
the following step. Choose two related vertices in G;. Connect them by a new
k+4
path of |

then, after the ¢ iterations, choose again two related vertices v and v in G,.
Connect them by a new path of » new vertices.

| ~ 1 new vertices. This gives a graph G1. If r is non-zero,

The obtained graph is k-self-repairing of order n and has a size of at most

dn+k*—-2k—-15 . . dn + k2 —12 _
20 1) if n is odd and n + W otherwise.

Second construction :

We give a second construction which is more complicated then the previous
one but provides a better upper bound when k is odd and bounded by O(y/n).

For k > 1, consider now the following family of k-self-repairing graphs of order
n denoted G(n, k) constructed as follows (see figure 2) :

e Let t and r be the non-negative integers such that Lg] —1=t(k+2)+r,
with 0 <r < (k+1).

e Set{=t(k+2)and o = |_k_—2i-_2__|

e Take two vertex-disjoint paths P, and P, each of length . Set P, =
[0y 21, ..., 2] and P = [y, 21, - - -, 41)- Connect z, and yp by an edge.

Case k is at leat 2 :
e For all 7:, 1< < t, connect Ti{k+2) to Yi(k+2) and Ti(k+2)-1 to Yi(k+2)—1-

e If k is even, connect Zi(k42)4a t0 Yik+2)+a a0d Tiki2)ra—1 O Yitk+2)+a—1,
for all 4,0 < i <t —1. If k is odd connect Ti(kt2)+a O Yi(k+2)+a—1 and
Tifk12)+a—1 L0 Yi(ky2)1a—2, forall 4,0 <i <7 — 1.

e Set n’ =n— |V(P)UV(P,)| . Wehave n' =n— 2[;] + 2r and then,
0<n <2k+2ifniseven and, 1 < n' < 2k + 3 otherwise. In the
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following, we add n' new vertices and complete by necessary edges in
order to obtain a k-self-repairing graph.

o If »’ < k+ 1, place n’' new vertices along a new path, say P, whose
extremities are connected, one to z;, the other to 4 . If n’ < k, no
more edge is needed and, the obtained k-self-repairing graph G verifies
|E(G)l =n+4t. Ifn’ = k+1, add a chord in P as shown in figure
2 c)). This suffices to obtain a k-self-repairing graph G and we have,
|E(G)f =n+1+4t Ifn' = k+ 2, place k vertices along a path as
done for P, connect the two remaining vertices, say vy and wg by an
edge and connect vg to @y and, wy to yp (figure 2 d} ). No more edge
is needed and the ‘obtained k-self-repairing graph G verifies |E(G)| =
n+2+4t. If k43 < n' <2k <+ 2, start with a construction as the one
just previously obtained (figure 2 d) ). This places k + 2 vertices among
the n'. Then, place the remaining vertices along a new path, P', whose
extremities are connected, one to vg, the other to wq (figure 2 ¢) ). No
more edge is needed and the obtained k-self-repairing graph G verifies
|E(G)| = n+ 3+ 4t. If n' = 2k + 3, start with a construction as the
one just previously obtained (figure 2 e) ). This places 2k + 2 vertices
among the n'. Then, place the remaining vertex on P or P' and add a
new chord in the path where the remaining vertex has just been placed,
as done in case ¢). We obtain a k-self-repairing graph G that verifies
|E(G)| =n+ 4+ 4t.

Case k=1 (figure 3) :

e Connect x;, to ys, z2 to 1, ; to y and, for all 4,1 < 7 < (¢ — 1),
connect z3 to ys; and, 3 t0 ys—y and ysir2 and, Zspo tO s, If
n' = n — |V(P) U V(P,)| is non-zero, place n’ new vertices along a
new path, connected as done above for P. If n’ = 1 no more edge is
needed. If n' > 2, let z the extremity of P connected to z; and 2,
the one connected to y;. Add the chord [z1,1]. If n' < 3, no more
edge is needed. If n’' = 4, add the chord [z1, z3] and then, no more edge
is needed. If n’ = 5, add the chord [2s, z5] and then, no more edge is
needed. The resulting graph is k-self-repairing and has a size of at most
n+ 24 4.

A graph in G(n, k) is k-self-repairing and has a size of at most :

-1 n—2

el gy +a” 2
pral S+

n+d+dt=n+4+4|
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d)n'=k+2. e k+3<n <2k+2.

3 Complexity of the problem of finding a min-
imum k-self-repairing spanning subgraph

In this section, we consider minimum k-self-repairing spanning subgraphs of a
given graph. We denote Ng(z) the open neighborhood of z in G, that is, the
set of vertices of G adjacent to z in G. '

First note that checking wether a graph is k-self-repairing can be done in
polynomial time using the basic following algrithm :

Algorithm 3.1 :

Input : A graph G, a positive integer k.
Output : Yes if G is k-self-repairing , No if it is not.

begin
For each vertex = of G do
begin
H«G-z;
S« Ng(x)
For each pair of vertices {u,v} € S do
begin

compute dg(u,v) ;
if dg(u,v) > k + 2, return No ;
end,;
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Figure 3: a) n' = 0. b) n' =5.

end;
return Yes ;
end ;

Computing the distance between two vertices is done in polynomial time .
For each vertex, we perform at most dg(z)(dg(z) — 1)/2 such computation.
Therefore, the time of algorithm 3.1 is bounded by a polynomial of the size of
G.

Problem 3.2 : II.

Instance : A positive integer K > 2, a K-self-repairing graph G, o positive
integer bound B.

Question : Does there exist o K-self-repairing spanning subgroph of G of size
no more than B ¢

We shall prove that II is NP-complete by proving a reduction from the following
NP-complete minimum spanning subgraph problem with diameter constraints

(MSSPDC) ([1]).

Problem 3.3 : MSSPDC.

Instance : A positive integer k > 2, a graph G of diameter k, a positive
integer bound b.

Question : Does there exist a spanning subgraph of G of diameter k and of
size no more than b ¢



Theorem 3.4 : II is NP-complete.

Proof

Il is in NP since, given a spanning subgraph of G, one can verify, in polynomial
time, wether it is K-self-repairing (using algorithm 3.1, for example) and then
comparing its size to B,

Let T be an instance of MSSPDC that is positive integers £ and b and a graph
G of diameter k. Let V = {1, %s,..., %, } be the set of vertices of G. Consider
the following instance J of II :

1. The graph G of J is obtained by taking a copy of G and adding, from
each vertex z; a path P; joining ; and £ = k — 1 new vertices. Let 1; be
the second extremity of P, Add a new vertex z connected to all y; (see
figure 4).

2. K =3k ~4 and B = b+ kn, where n is the order of G.

Figure 4:

The order of the size of Z is at most n? log2 n. Since k < n and b < n?, the
size of J is bounded by a polynomial in n? log? n.

Now, we have to prove that Z is a yes-instance of MSSPDC if and only if 7 is

a yes-instance of II.

Suppose there exists a spanning subgraph H of G of diameter & and of size
bounded by b. :

Consider the spanning subgraph H of G induced by all edges of H and all
edges external to G. It is easy to see that H is K-self-repairing and of size at
most B. Therefore, J is a yes-instance of II.
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Now, let J be an instance of II constructed from an instance Z of MSSPDC
as described above. If J is a yes-instance of II, there exists a spanning K-
self-repairing graph H of G of size no more than B. The minimum degree in
H is at least 2. This means that all edges external to G are in H. Let H be
the spanning subgraph of G induced on all edges of E(#)NE(G). Let {z;, z;}
be a pair of vertices of H. The transition of H defined by edges [z, %], [, ;]
is in a cycle of length at most K + 4. Every cycle containing y; and y; must
include all vertices of paths P; and P;. Therefore, the distance in H between
r; and x; is at most K + 4 — 2k = k and then, H is a spanning subgraph of
G of diameter k. The size of H, |E(H)| = |E(H)| — kn < B — kn = b and,
therefore 7 is a yes-instance of MSSPDC. O :

The previous reduction shows that Il is NP-complete for K = 3p+2,p > 0. In
fact, if we consider the same reduction from intances of MSSPDC, with k£ > 3,
by setting t = & — 2, K = 3k — 6 and B = b+ n(k — 1), we show that I is
NP-complete for K’ = 3p,p > 1. In the same way, considering instances of
MSSPDC with k > 4, settingt =k —3, K = 3k — 8 and B = b+ n(k — 2),
we show that II is also NP-complete for K = 3p 4 1,p > 1. Therefore II is
NP-complete for all K > 2.
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