
Some aspects of Isabelle/Isar

Makarius Wenzel
Univ. Paris-Sud, LRI

May 2011

λ →

∀
=Isa

be
lle

β
α

Isar

The Isabelle/Pure framework

Pure syntax and primitive rules (λ-HOL)

α ⇒ β function type (terms depending on terms)∧
:: (α ⇒ prop) ⇒ prop universal quantifier (proofs depending on terms)

=⇒ :: prop ⇒ prop ⇒ prop implication (proofs depending on proofs)

[x :: α]....
b(x) :: β

(λx :: α. b(x)) :: α ⇒ β
(⇒I)

b :: α ⇒ β a :: α
(b a) :: β

(⇒E)

[x :: α]....
p(x) : B(x)

(λx :: α. p(x)) : (
∧

x :: α. B(x))
(
∧

I)
p : (

∧
x :: α. B(x)) a :: α

(p a) : B(a)
(
∧

E)

[p : A]....
q : B

(λp : A. q) : (A =⇒ B)
(=⇒I)

p : A =⇒ B q : A
(p q) : B

(=⇒E)

The Isabelle/Pure framework 2

Pure rules (standard version)

Note:

• propositions simply typed: omit types for x and judgement t :: τ

• proofs formally irrelevant: omit proof terms p

[x]....
B(x)∧
x . B(x)

∧
x . B(x)

B(a)

[A]....
B

A =⇒ B
A =⇒ B A

B

The Isabelle/Pure framework 3

Pure equality

≡ :: α ⇒ α ⇒ prop

Axioms for t ≡ u: α, β, η, refl , subst , ext , iff

Unification: solving equations modulo αβη

• Huet: full higher-order unification (infinitary enumeration!)

• Miller: higher-order patterns (unique result)

Note: no built-in computation!

The Isabelle/Pure framework 4

Representing Natural Deduction rules

Examples:

P Q
P ∧ Q

∧
P Q. P =⇒ Q =⇒ P ∧ Q

[P]....
Q

P −→ Q
∧

P Q. (P =⇒ Q) =⇒ P −→ Q

P 0

[n][P n]....
P (Suc n)
P n

∧
P n. P 0 =⇒ (

∧
n. P n =⇒ P (Suc n)) =⇒ P n

The Isabelle/Pure framework 5

Representing goals

Protective marker:

:: prop ⇒ prop
≡ λA :: prop. A

Initialization:

C =⇒ #C
(init)

General situation: subgoals imply main goal

B1 =⇒ . . . =⇒ Bn =⇒ #C

Finalization:
#C
C

(finish)

The Isabelle/Pure framework 6

Hereditary Harrop Formulas

Define the following sets:

x variables
A atomic formulae (without =⇒/

∧
)∧

x∗. A∗ =⇒ A Horn Clauses

H
def
=

∧
x∗. H∗ =⇒ A Hereditary Harrop Formulas (HHF)

Conventions for results:

• outermost quantification
∧

x . B x is rephrased via schematic
variables B ?x

• equivalence (A =⇒ (
∧

x . B x)) ≡ (
∧

x . A =⇒ B x) produces
canonical HHF

The Isabelle/Pure framework 7

Rule composition (back-chaining)

A =⇒ B B ′ =⇒ C B θ = B ′θ
A θ =⇒ C θ

(compose)

A =⇒ B
(H =⇒ A) =⇒ (H =⇒ B)

(=⇒-lift)

A a =⇒ B a
(
∧
x. A (a x)) =⇒ (

∧
x. B (a x))

(
∧

-lift)

The Isabelle/Pure framework 8

General higher-order resolution

rule: A a =⇒ B a

goal : (
∧
x. H x =⇒ B ′ x) =⇒ C

goal unifier : (λx. B (a x)) θ = B ′θ

(
∧
x. H x =⇒ A (a x)) θ =⇒ C θ

(resolution)

goal : (
∧
x. H x =⇒ A x) =⇒ C

assm unifier : A θ = H i θ (for some H i)

C θ
(assumption)

Both inferences are omnipresent in Isabelle/Isar:

• resolution: e.g. OF attribute, rule method, also command

• assumption: e.g. assumption method, implicit proof ending

The Isabelle/Pure framework 9

Example: tactic proof

lemma A ∧ B −→ B ∧ A

apply (rule impI)

apply (rule conjI)

apply (rule conjunct2) — schematic state!

apply assumption

apply (rule conjunct1) — schematic state!

apply assumption

done

lemma A ∧ B −→ B ∧ A

apply (rule impI)

apply (rule conjI)

apply (erule conjunct2)

apply (erule conjunct1)

done

The Isabelle/Pure framework 10

Notions of proof

Informal proof: mathematical vernacular

[Davey and Priestley: Introduction to Lattices and Order, Cambridge
1990, pages 93–94]

The Knaster-Tarski Fixpoint Theorem. Let L be a complete
lattice and f : L → L an order-preserving map. Then

d
{x ∈ L |

f (x) ≤ x} is a fixpoint of f.

Proof. Let H = {x ∈ L | f (x) ≤ x} and a =
d

H. For all x ∈ H
we have a ≤ x, so f (a) ≤ f (x) ≤ x. Thus f (a) is a lower bound
of H, whence f (a) ≤ a. We now use this inequality to prove the
reverse one (!) and thereby complete the proof that a is a fixpoint.
Since f is order-preserving, f (f (a)) ≤ f (a). This says f (a) ∈ H, so
a ≤ f (a).

Notions of proof 12

Formal proof (1): lambda term

Knaster Tarski ≡
λ(H :) Ha: .

order trans rules 24 · · · (thm · H) ·
(complete lattice class.Inf greatest · · · H ·

(λx Hb: .

order trans rules 7 ·
d
{x . ?f x ≤ x} · x · ?f · · (thm · H) · (thm · H) ·

(complete lattice class.Inf lower · · · H · Hb) ·
(iffD1 · · · (mem Collect eq · x · (λx . ?f x ≤ x) · (thm · H)) · Hb) ·
Ha)) ·

(complete lattice class.Inf lower · · · H ·
(iffD2 · · · (mem Collect eq · ?f (

d
{x . ?f x ≤ x}) · (λa. ?f a ≤ a) · (thm · H)) ·

(Ha · ?f (
d
{x . ?f x ≤ x}) ·

d
{x . ?f x ≤ x} ·

(complete lattice class.Inf greatest · · · H ·
(λx Hb: .

order trans rules 7 ·
d
{x . ?f x ≤ x} · x · ?f · · (thm · H) · (thm · H) ·

(complete lattice class.Inf lower · · · H · Hb) ·
(iffD1 · · · (mem Collect eq · x · (λx . ?f x ≤ x) · (thm · H)) · Hb) ·
Ha)))))

Notions of proof 13

Formal proof (2): Isar text

theorem Knaster Tarski :

fixes f :: ′a::complete lattice ⇒ ′a

assumes mono:
∧

x y. x ≤ y =⇒ f x ≤ f y

shows f (
d
{x . f x ≤ x}) =

d
{x . f x ≤ x} (is f ?a = ?a)

proof −
have f ?a ≤ ?a (is ≤

d
?H)

proof (rule Inf greatest)

fix x assume x ∈ ?H

then have ?a ≤ x by (rule Inf lower)

also from 〈x ∈ ?H 〉 have f . . . ≤ x ..
moreover note mono finally show f ?a ≤ x .

qed
also have ?a ≤ f ?a

proof (rule Inf lower)

from mono and 〈f ?a ≤ ?a〉 have f (f ?a) ≤ f ?a .
then show f ?a ∈ ?H ..

qed
finally show f ?a = ?a .

qed

Notions of proof 14

Isar language characteristics

Isar: “Intelligible semi-automated reasoning”

• interpreted language of “proof expressions”

– proof context
– flow of facts towards goals
– simple reduction to Isabelle/Pure logic

• language framework

– highly structured
– highly extensible: derived commands, proof methods
– non-computational: language for proofs, not proof procedures

Notions of proof 15

Example proofs patterns: induction and calculation

theorem fixes n :: nat shows P n

proof (induct n)

show P 0 〈proof 〉
next

fix n assume P n

show P (Suc n) 〈proof 〉
qed

notepad
begin

have a = b 〈proof 〉
also have ... = c 〈proof 〉
also have ... = d 〈proof 〉
finally have a = d .

end

Notions of proof 16

Example proof: induction × calculation

theorem
fixes n :: nat

shows (
∑

i=0..n. i) = n ∗ (n + 1) div 2

proof (induct n)

case 0

have (
∑

i=0..0. i) = (0::nat) by simp

also have . . . = 0 ∗ (0 + 1) div 2 by simp

finally show ?case .
next

case (Suc n)

have (
∑

i=0..Suc n. i) = (
∑

i=0..n. i) + (n + 1) by simp

also have . . . = n ∗ (n + 1) div 2 + (n + 1) by (simp add : Suc.hyps)

also have . . . = (n ∗ (n + 1) + 2 ∗ (n + 1)) div 2 by simp

also have . . . = (Suc n ∗ (Suc n + 1)) div 2 by simp

finally show ?case .
qed

Notions of proof 17

The Isar proof language

Notepad for logical entities

notepad
begin

Terms:

let ?f = λx . x — term binding (abbreviation)

let + ?b = ?f a + b — pattern matching

let ?g = ?f ?f — Hindler-Milner polymorphism

Facts:

note rules = sym refl trans — collective facts

note a = rules(2) — selection

note b = this — implicit result this

end

The Isar proof language 19

Logical contexts

Main judgment:

Γ `Θ ϕ

• ϕ: conclusion (rule statement using
∧

/=⇒)

• Θ: global theory context

type ∀α. (α)c polymorphic type constructor
const c :: ∀α. τ [α] polymorphic term constant
axiom a: ∀α. A[α] polymorphic proof constant

• Γ: local proof context

type α fixed type variable
fix x :: τ [α] fixed term variable
assume a: A[α, x] fixed proof variable

The Isar proof language 20

Proof context elements (forward reasoning)

notepad
begin
{

fix x

have B x 〈proof 〉
}
have

∧
x . B x by fact

end

notepad
begin
{

assume A

have B 〈proof 〉
}
have A =⇒ B by fact

end

The Isar proof language 21

Local claims and proofs

Main idea: Pure rules turned into proof schemes

from facts1 have props using facts2

proof (initial method)
body

qed (terminal method)

Solving sub-problems: within body

fix vars
assume props
show props 〈proof 〉

The Isar proof language 22

Canonical backwards reasoning

notepad
begin

have A −→ B

proof (rule impI)

assume A

show B 〈proof 〉
qed

end

notepad
begin

have ∀ x . B x

proof (rule allI)

fix x

show B x 〈proof 〉
qed

end

Note: standard rules can be used implicitly —
by omitting “(rule impI)” and “(rule allI)” above.

The Isar proof language 23

Example: basic natural deduction

notepad
begin

have A ∧ B −→ B ∧ A

proof
assume ab: A ∧ B

show B ∧ A

proof
show B using ab by rule

show A using ab by rule

qed
qed

end

The Isar proof language 24

Atomic proofs

Single-step proofs:

by rule ≡ ..
by this ≡ .

Automated proofs:

by auto
by simp
by blast
by force

Omitted proofs:

sorry ≡ by cheating

The Isar proof language 25

Analyzing atomic proofs

General atomic proof:

by (initial method) (terminal method)

Structured expansion:

proof (initial method) qed (terminal method)

Tactical transformation:

apply (initial method)
apply (terminal method)
apply (assumption+)?
done

The Isar proof language 26

Derived proof patterns

Calculational reasoning

also0 = note calculation = this

alson+1 = note calculation = trans [OF calculation this]

finally = also from calculation

moreover = note calculation = calculation this

ultimately = moreover from calculation

Example:

notepad
begin

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

end

notepad
begin

have A 〈proof 〉
moreover have B 〈proof 〉
moreover have C 〈proof 〉
ultimately have A and B and C .

end

Note: term “. . .” abbreviates the argument of the last statement

Derived proof patterns 28

Induction

using facts
proof (induct insts arbitrary: vars rule: fact)

Example:

notepad
begin

fix n :: nat and x :: ′a have P n x

proof (induct n arbitrary: x)

case 0

show P 0 x 〈proof 〉
next

case (Suc n)

from 〈P n a〉 show P (Suc n) x 〈proof 〉
qed

end

Derived proof patterns 29

Generalized elimination

obtain x where B x 〈proof 〉 =

have reduction:
∧

thesis. (
∧
x. B x =⇒ thesis) =⇒ thesis 〈proof 〉

fix x assume �eliminate reduction� B x

Γ `
∧

thesis. (
∧
x. B x =⇒ thesis) =⇒ thesis

Γ ∪ B x ` C

Γ ` C
(eliminate)

Example:

notepad
begin

assume ∃ x . B x

then obtain x where B x ..
end

notepad
begin

assume A ∧ B

then obtain A and B ..
end

Derived proof patterns 30

