Some aspects of Isabelle/Isar

Makarius Wenzel
Univ. Paris-Sud, LRI

May 2011

The Isabelle/Pure framework

Pure syntax and primitive rules (\-HOL)

a = 0 function type (terms depending on terms)
N\ :: (o = prop) = prop universal quantifier (proofs depending on terms)
—> :: prop = prop = prop implication (proofs depending on proofs)

[z 2 af
b(x):::ﬁ bra=p8 a: o

(Az :: . b(x)) . = B (=1) (ba) :: B (=E)
[z :]
(z) : B(x) : (A\z :: a. B(z)) a: «

(Az @ . p?a:)) : (A\z :: a. B(x)) (AD) : (p a) : B(a) (AE)
[P+ A
' B : A B : A
(Ap : A. qq) : (A = B) (=1 . (ﬁ) : Bq (=F)

The Isabelle/Pure framework 2

Pure rules (standard version)

Note:
e propositions simply typed: omit types for x and judgement ¢ :: 7
e proofs formally irrelevant: omit proof terms p

]

Nz. B(z) B(a)

4]
B A=—B A
A— B B

The Isabelle/Pure framework 3

Pure equality

= I 00 = O = prop

Axioms for t = u: «, B, n, refl, subst, ext, iff

Unification: solving equations modulo a8n

e Huet: full higher-order unification (infinitary enumeration!)
e Miller: higher-order patterns (unique result)

Note: no built-in computation!

The Isabelle/Pure framework

Representing Natural Deduction rules

Examples:

P
PAQ

P]
Q
P — Q
[n] [P n]

PO P(Siucn)
Pn

The Isabelle/Pure framework

AP Q. P— Q— P ACQ

NP Q. (P—= Q) — P — (

APn. P0O=— (An. Pn =— P (Sucn)) = Pn

Representing goals

Protective marker:

. prop = prop
= AA :: prop. A

Initialization:

O — #C(init)
General situation: subgoals imply main goal

By — ...— B, — #(C

Finalization:

The Isabelle/Pure framework

Hereditary Harrop Formulas

Define the following sets:

T variables
A atomic formulae (without =—/A)
Ax*. A* — A Horn Clauses

def

H = Ax*. H* — A Hereditary Harrop Formulas (HHF)

Conventions for results:

e outermost quantification Az. B z is rephrased via schematic
variables B %z

e equivalence (A = (Az. Bz)) = (Axz. A = B x) produces
canonical HHF

The Isabelle/Pure framework 7

Rule composition (back-chaining)

The Isabelle/Pure framework

General higher-order resolution

rule: Aa=— Ba
goal: (Az. HT = B'z) = C
goal unifier: (A\z. B (ax))0 = B'6

— — luts
€\o. H7— A (a7)0 = o Cesolution)
goal: (ANT. HT = AT) = C
assm unifier: A6 = H;0 (for some H;) ,
oo (assumption)

Both inferences are omnipresent in Isabelle/Isar:
e resolution: e.g. OF attribute, rule method, also command

e assumption: e.g. assumption method, implicit proof ending

The Isabelle/Pure framework

Example: tactic proof

lemma AANB — BAA

apply (rule impl)
apply (rule conjl)

apply (rule conjunct2) — schematic state!
apply assumption

apply (rule conjunctl) — schematic state!
apply assumption

done

lemma AANB — BAA
apply (rule impl)

apply (rule conjl)

apply (erule conjunct2)
apply (erule conjunctl)
done

The Isabelle/Pure framework

10

Notions of proof

Informal proof: mathematical vernacular

[Davey and Priestley: Introduction to Lattices and Order, Cambridge
1990, pages 93-94]

The Knaster-Tarski Fixpoint Theorem. Let L be a complete
lattice and f: L — L an order-preserving map. Then [|{z € L |
f(z) < z}is a fixpoint of f.

Proof. Let H ={zx € L | f(x) <z}anda=[]|H Forallz € H
we have a < z, so f(a) < f(x) < x. Thus f(a) is a lower bound
of H, whence f(a) < a. We now use this inequality to prove the
reverse one (!) and thereby complete the proof that a is a fixpoint.
Since f is order-preserving, f(f(a)) < f(a). This says f(a) € H, so

a < f(a).

Notions of proof 12

Formal proof (1): lambda term

Knaster Tarski =

X(H:) Ha: _.
order_trans_rules 24 - - _+ (thm « H) -
(complete,lattz’ce,elass.Inf,greatest -« H .
(Xz Hb: _
order_trans_rules 7 - [{z. ?fz < z} - - (thm - H) « (thm - H) -
(complete_lattice_class.Inf lower - - _ H Hb)
(iffD1 - - -« (mem_Collect eq - x - (Ax. ?fx < z) + (thm - H)) - Hb) -
Ha)) -
(complete,lattice,class.Inf,lower -« H -
(iffD2 - - (mem_Collect eq - ?f ([1{z. ?fz < z}) - (Na. ?fa < a) - (thm - H)) -
(Ha - Qf (M{e. %z < 2}) - M{x. ?fI <z} -
(complete_lattice_class.Inf greatest - _+-H-
(Ax Hb:
order. tmns rules 7 - [1{z. ?%fz < z} - - (thm - H) « (thm - H) -
(complete_lattice_class. Inf lower - _ - _ H Hb)
(iffD1 - — - -« (mem_Collect eq - x - (Az. ?fx < z) + (thm - H)) - Hb) -
Ha))))

Notions of proof 13

Formal proof (2): Isar text

theorem Knaster Tarski:
fixes f :: ‘a::complete_lattice = 'a
assumes mono: Nz y. z <y = fz < fy
shows [([{z. fz < z})=[]|{z. fz <z} (isf % = %a)
proof —
have f 70 < %a (is - < []%H)
proof (rule Inf greatest)
fix x assume v € 7H
then have ?a < z by (rule Inf lower)

also from (x € H) have [... < z ..
moreover note mono finally show f 70 < z .
ged

also have %0 < f %a
proof (rule Inf lower)
from mono and (f ?a < %a) have f (f %a) < f %a .
then show [7a € ?H ..
ged
finally show f %0 = “a .
ged

Notions of proof

14

Isar language characteristics

Isar: “Intelligible semi-automated reasoning”

e interpreted language of “proof expressions”

— proof context
— flow of facts towards goals
— simple reduction to Isabelle/Pure logic

e language framework

— highly structured
— highly extensible: derived commands, proof methods
— non-computational: language for proofs, not proof procedures

Notions of proof 15

Example proofs patterns:

theorem fixes n :: nat shows P n
proof (induct n)

show P 0 (proof)
next

fix n assume P n

show P (Suc n) (proof)

ged

notepad

begin
have a = b (proof)
also have ... = ¢ (proof)
also have ... = d (proof)
finally have ¢« = d .

end

Notions of proof

induction and calculation

16

Example proof: induction x calculation

theorem

fixes n :: nat

shows (> i=0..n.i) =nx* (n + 1) div 2
proof (induct n)

case 0
have (> i=0..0. i) = (0::nat) by simp
also have ... =0 % (0 + 1) div 2 by simp
finally show ?case .

next

case (Suc n)
have (> i=0..Suc n. i) = (>_i=0..n. i) + (n + 1) by simp

alsohave ... =n x (n+ 1) div 2 4+ (n + 1) by (simp add: Suc.hyps)
alsohave ... = (n*x (n+ 1)+ 2 % (n 4+ 1)) div 2 by simp
also have ... = (Suc n * (Sucn + 1)) div 2 by simp
finally show ?case .
ged

Notions of proof

17

The Isar proof language

Notepad for logical entities

notepad
begin
Terms:
let ?f = \z. z — term binding (abbreviation)
let .+ %= %fa—+ b — pattern matching
let 99 = 7f 7f — Hindler-Milner polymorphism
Facts:
note rules = sym refl trans — collective facts
note a = rules(2) — selection
note b = this — implicit result this
end

The Isar proof language

19

Logical contexts

Main judgment:

P|_@g0

e : conclusion (rule statement using \/—)

e O: global theory context

type Va. (a)c

const ¢ :: Va. 7[a]

axiom a: Va. AlQ]
e I': local proof context

type «

fix z :: T[]

assume a: Ala, x|

The Isar proof language

polymorphic type constructor
polymorphic term constant
polymorphic proof constant

fixed type variable
fixed term variable
fixed proof variable

20

Proof context elements (forward reasoning)

notepad
begin
{
fix x
have B = (proof)

}
have Az. B = by fact

end

The Isar proof language

notepad
begin
{

assume A
have B (proof)

}

have A —> B by fact
end

21

Local claims and proofs

Main idea: Pure rules turned into proof schemes

from facts; have props using factss
proof (initial_method)

body
qed (terminal method)

Solving sub-problems: within body

fix vars
assume props
show props (proof)

The Isar proof language

22

Canonical backwards reasoning

notepad notepad
begin begin
have A — B have V. Bz
proof (rule impl) proof (rule alll)
assume A fix x
show B {proof) show B = (proof)
ged ged
end end

Note: standard rules can be used implicitly —

by omitting “(rule tmpI)" and “(rule alll)" above.

The Isar proof language 23

Example: basic natural deduction

notepad
begin
have AANB — B A A
proof
assume ab: A AN B
show B A A
proof
show B using ab by rule
show A using ab by rule
ged
ged
end

The Isar proof language

24

Atomic

Single-step proofs:

by rule
by this

Automated proofs:

by auto
by simp
by blast
by force

Omitted proofs:
sorry = by cheating

The Isar proof language

proofs

25

Analyzing atomic proofs

General atomic proof:

by (initial method) (terminal method)

Structured expansion:

proof (initial method) qed (terminal method)

Tactical transformation:

apply (initial_method)
apply (terminal method)
apply (assumption+)?
done

The Isar proof language

26

Derived proof patterns

Calculational reasoning

alsop = note calculation = this
also,+1 = note calculation = trans [OF calculation this]
finally = also from calculation
moreover = note calculation = calculation this
ultimately = moreover from calculation
Example:
notepad notepad
begin begin
have ¢ = b (proof) have A (proof)
also have ... = ¢ (proof) moreover have B (proof)
also have ... = d (proof) moreover have C' (proof)
finally have o = d . ultimately have A and B and C' .
end end
Note: term “..." abbreviates the argument of the last statement

Derived proof patterns

Induction

using facts
proof (induct insts arbitrary: vars rule: fact)

Example:

notepad
begin
fix n :: nat and z :: ‘a have P n x
proof (induct n arbitrary: x)
case 0
show P 0 = (proof)
next
case (Suc n)
from (P n a) show P (Suc n) x (proof)
ged
end

Derived proof patterns 29

Generalized elimination

obtain T where B T (proof) =
have reduction: /\thesis. (\T. B T = thesis) == thesis (proof)

fix T assume <eliminate reduction> B x

' - Athesis. (ANT. B T = thesis) = thesis
ruBzhkC

ANy (eliminate)
Example:
notepad notepad
begin begin
assume Jz. B x assume A N B
then obtain z where B z .. then obtain A and B ..
end end

Derived proof patterns

30

